如何计算阵列单元阵列的加权平均值?

在我之前的问题的概括中,如何对单元格元素(即并且将保留数组本身)的加权平均值执行? 我首先修改gnovice的答案,如下所示:
dim = ndims(c{1});          %# Get the number of dimensions for your arrays
M = cat(dim+1,c{:});        %# Convert to a (dim+1)-dimensional matrix
meanArray = sum(M.*weigth,dim+1)./sum(weigth,dim+1);  %# Get the weighted mean across arrays
在此之前,确保
weight
具有正确的形状。我认为需要照顾的三个案例是 weight = 1(或任何常数)=>返回通常的平均值 numel(weight)== length(c)=> weight是每个单元格c {n}(但对于固定n的每个数组元素都相等) numel(weight)== numel(cell2mat(c))=>每个数组元素都有自己的权重... 案例一很容易,案例3不太可能发生,所以此刻我对案例2感兴趣:如何将权重转换为数组,使得
M.*weight
在上面的总和中具有正确的维度?当然,也可以看到显示另一种获得加权平均值的方法的答案。 编辑事实上,如果权重与c具有相同的结构,案例3甚至比案例1更为微不足道(重言式,道歉)。 这是我对案例2的意思的一个例子:
c = { [1 2 3; 1 2 3], [4 8 3; 4 2 6] };
weight = [ 2, 1 ];
应该回来
meanArray = [ 2 4 3; 2 2 4 ]
(例如,对于第一个元素(2 * 1 + 1 * 4)/(2 + 1)= 2)     
已邀请:
熟悉REPMAT后,现在我的解决方案是:
function meanArray = cellMean(c, weight)
% meanArray = cellMean(c, [weight=1])
% mean over the elements of a cell c, keeping matrix structures of cell
% elements etc. Use weight if given.

% based on http://stackoverflow.com/q/5197692/321973, courtesy of gnovice
% (http://stackoverflow.com/users/52738/gnovice)
% extended to weighted averaging by Tobias Kienzler
% (see also http://stackoverflow.com/q/5231406/321973)

dim = ndims(c{1});          %# Get the number of dimensions for your arrays
if ~exist('weight', 'var') || isempty(weight); weight = 1; end;
eins = ones(size(c{1})); % that is german for "one", creative, I know...
if ~iscell(weight)
    % ignore length if all elements are equal, this is case 1
    if isequal(weight./max(weight(:)), ones(size(weight)))
        weight = repmat(eins, [size(eins)>0 length(c)]);
    elseif isequal(numel(weight), length(c)) % case 2: per cell-array weigth
        weight = repmat(shiftdim(weight, -3), [size(eins) 1]);
    else
        error(['Weird weight dimensions: ' num2str(size(weight))]);
    end
else % case 3, insert some dimension check here if you want
    weight = cat(dim+1,weight{:});
end;

M = cat(dim+1,c{:});        %# Convert to a (dim+1)-dimensional matrix
sumc = sum(M.*weight,dim+1);
sumw = sum(weight,dim+1);
meanArray = sumc./sumw;  %# Get the weighted mean across arrays
    

要回复问题请先登录注册